
XVI. Science Data Systems
SPACESCIENCESDIVISION

N67.  9!57,
A. Near-Maximal-Length Cycles With Linear back taps (see Ref. 2). In these eases,four or a higherFeedback Shift Registers, M. Perlman even number of taps are required. As the number of

feedback taps increases, the complexity of the feedback
I. Introduction function grows sharply. The question then arises: Are

"_ The behavior of synchronously operated shift registers near-maximal-length cycles realizable with linear FSRs
with linear logic feedback has been studied in detail having feedback functions less complk ated than a four-
(e.g., Ref. 1). An r-stage linear feedback shift register input modulo 2 summer? It will be shown that cycle
(FSR) can be used to realize cycle lengths of 2r- 1, which lengths of 2"-2 and 2'-4 can be realized with s-stage
are termed maximal. The simplest of these, in terms of linear FSRs. The feedback functions are (with few ex-

the complexity of the feedback logic, are those with two- ceptions) effectively a three-input modulo 2 summer.
tap feedback which satisfy the linear recurrence rela-

_ tionship 2. Generalizedr-Stage FSRWith LinearFeedback

_ a, = a,-_ • a__,. (1) In Fig. 1, the stages of the register are designated (leftto right) S, S_, ..., S,. The output of stage Si is connected
Z'-
= The subscript n in Eq. (1) refers to the clock pulse time. to the input of the modulo 2 summer when C,__ = 1.

The bit being fed back at time n is a,,, the modulo 9.sum Co is always 1, otherwise fewer than r stages would be in

(i.e., EXCLUSIVE-OR) of the contents of the tth and rth use. The external input e is a Boolean constant.
stages at time n. The initial state of the ith stage is aH
where n = 0. Let x_ represent the present state and X_ the next state

cf stage S_. The next state of each stage may be expressed
Unfortunately, there are many values of r for which as a linear Boolean function of the present state of one or

maximal-length cycles cannot be realized with two feed- more stages.
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X, =: Cr-, X, 0 C, .:x...• "'" ff}C, x, , • x, if) e Therefore,

X: x, L - 0

X: =- x._,
and

(2)
X = Tx

This case has been thoroughly analyzed (see Refs. 1

X_ =- x, , and 4) and is summarized here. The smallest value of k
for which Tk = I is the length of the longest possible

This may be expressed as cycle.

-XI"_ _Cr-, C .... """ 1 !1 lfxl li The divisibility properties of q)(x), the characteristic

- polynomial of T, and k are related as follows:

X: 1 0 - - • C, I x_
= .... _- O The smallest value of k for which

• i .....

....... {z - 1 (5)
X, 0 0 0 0 ,. 0

(3) is the length of the longest cycle whieh always contains
the state 00 ... 01. In general,

or

q,(X)= IT--xI 1 =,_, + C,_,A r-' _ "" + C,x+ 1
X = Tx G t, (4) (6)

i
i For simplicity, + is used to represent modulo 2 addition.
t Rules of modulo 2 arithmetic are used in determining X. Also, - 1 appears as + 1 since - 1 --_ I rood 2. In accord-

The r X r Boolean matrix T is nonsingular since its row ance with the Caley-Hamilton theorem (Ref. 3),
(column) vectors are linearly independent (Ref. 3). It is

termed an associated matrix. T represents the linear q)(T) = T k -I = 0
transformation of an r component vector (present state
of the register) into another r component vector (next and
state of the register). L represents a translation. When
nonzero (i.e., e = 1), the modulo 2 sum of the column T _ = I
vector L and Tx represents the complementation of the

, bit being fed back. A linear transformation T followed Thus, if q)(X)divides xk - 1 [i.e., _(x) is a factor of ak - 1],
-'i by a translation is called an afline transformation (Ref. 3). T satisfies X_ - 1 and T_ = I. The polynomial of the low-

Every translation is one-to-one and has an inverse, and est degree which is satisfied by a square matrix A is the
the linear transformation T is one-to-one and has an minimal polynomial re(x) of A, and it is unique. Fortu-
inverse. Hence, the aSne transformation Tx _ L is one- nately, as will be shown, q)(x) = m(,_) for the associated
to-one and has an inverse. This is another way of saying matrix T.
that each state has a unique predecessor (or equivalently,

; distinct states have distinct successors). When _(g) is irreducible, the smallest k for which

,_ (5) holds is termed the exponent to which _(X) belongs.
Of primary interest are the feedback combinations that To obtain the longest possible cycle length of an r-stage

yield the longest possible cycle length. FSR, one must find an irreducible _(x) of degree r which
belongs to a maximum exponent. The maximum eyrie

CASI_ I" length is

e=O k=9"-I
t,
l,
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The exponent ot an irreducible polynomial of degree r where gl(x), g_(x), "', g,,(x)are irreducible,
which is not maximum divides 2r - 1. For every positive

integer r, there are [q_(2_ - 1)]/1"polynomials of degree r k_ = LCM [e(v.) kol, e(v.,,)ko.,, "", e(vm)kgm]
that belong to a maximum exponent of 2' - 1. The Euler

phi-function q_(n) is the number of positive integers no where LCM denotes the least common multiple.
greater than the integer n that are relatively prime to n.

CASE n •

Irreducibility is a necessary, but not sufficient, condi-
tion for 4,(x) to belong to a maximum exponent. A 4,(x) of e = 1
degree r that belongs to a maximum exponent character-

izes an r-stage maximal length FSR. Then _;

Cycle lengths for irreducible polynomials through de- - 1
gree 19 are given in Ref. 5. Irreducible polynomials of 0

degree r > 1 will always have an odd number of terms, L -=
otherwise _b(X)will contain X + 1 as a factor. Irreducible

trinomiaN of maximum exponent characterize maximal ° |

length FSRs with the simplest feedback logic; namely, 0 1
a two-input modulo 2 summer. As previously stated,

trinomials are not always among the [q_(2" - 1)]/r irre- and
ducible polynomials of maximum exponent. A conjecture,'

which has since been proven true, states that every tri- X = Tx _ L
nomial of degree 8 m (m = 1,2, ...) is reducible. This is
a sufficient, but not necessary, condition for a trinomial
_o be reducible. The transformation T and the translation L may be

combined by bordering T with L to the right as a 6'o1-
umn, below with r zeros, and below and to the right by

For repeated irreducible factors such as 4,(x) [g(x)]_', a single entry one (Ref. 3). The matrix equation (Eq. 3)
can thus be written as

k_ = e(v)k_

where e(v) = 2i and i is an integer such that 1 < (2i/v) < 2. - X_ - C,__ C,__. • • C1' 1 1 - x_ 1
- X= 1 0 "" 0 0 0 xz

ITabulated below are values of e(v) for vfrom 1 through 10. • .....

• . = . ..... / (7)
,, e(,,) v e(,) ......

1 1 6 8 X, I 0 0 ...1 0 O x,

....................... -i2 2 7 8 1 0 0 '0 0 1_ .
3 4 8 8

4 4 9 16 The present state x is bordered with a one to make it

5 8 10 18 conformal with the bordered T matrix and to perform
the necessary complementation (i.e., translation) in the
feedback to $1 in Fig. 1. The next state vector X is also
bordered just as x. The one in the last row appears for

In general, for each successive transformation. The matrix

,(X) = [g,(x)]l', [g.(X)]_'.••• [g.(X)],- [: :]
A= (8)

'Madeby S. W. Golomb,formerlyof JPL Section331.
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+1  orly,xnmatrix therexistelemntary oy
1s,1 o,,,oia'ma*ri e,an,' that

e - d,(,_ ) 0 • • 0 -

0 d.,(;_) • • 0[p(A)]In AI][_)(_)] . .

® ) ..

0 0 •. d,,(x)m

Fig. 1. Generalized r-stage FSRwith linear feedback (11)

is of the order r 4 1 by r _ 1 and includes the transla- where d,(x), d..(M..... d,,(x) are monic polynomials (see

tion L. The characteristic polynomial of A is Ref. 6). Tile matrix [B-M] satisfies (i.e., is a root of)

T hi L I D(h) = d,(A) d..(A), ...,d,,(A) (12)

o(x)_ o 1-,_ [ (9)
in which d,(x)/cl,.,(x) for i = 1.... , n--1. The diagonal
matrix (Eq. 11) is the Smith canonical form of B ando(;_)= (x + 1)+(,_) (]o)
d,(x) for all i is a similarity invariant of B. The minimal

polynomial of B is d,(A). The characteristic polynomial

where ¢(-) is the characteristic polynomial of T. Just as T, of B is D(X). When D(X) = d,,(x), B is said to be non-

r A is nonsingular for all combinations of values of Cr, derogatory.

I where 1 < i < r and C,, = 1. It will be shown that 0(A)
is minimal for A, just as 4)(x) -- m(x) for T. Note that

the A + 1 in Eq. (10) accounts for the complementation The Smith canonical form can be derived from [B-M]
without explicitly determining P(A) and ¢(x). The Smithof the bit being fed back. The degree of .6(X) determines

the number of stages required. When the feedback of canonical form is derived as follows for the T and A

an FSR characterized by ¢(x) is complemented, it will be matrices.

designated by 4)(x)* where ¢(x)'* = [0(x)]/(x + 1).

a, The T nmtrix. Given the 4 X4 [T-x/] matrix,

3. The Minimal Polynomial of the T and A Matrices

, Every square matrix satisfies a unique polynomial, rA+C:, C.., C, 1-

called the minimal polynomial. The minimal polynomial L 1 A 0 0

t re(X) of a matrix B is the polynomial of lowes; (13)square

degree for which m(B) = 0. Furthermore, m(,_) divides 0 1 A 0

every polynomial which is satisfied by B (Ref. 3). There- 0 0 1 x
fore, m(X)[¢(x) where 0(x) is the characteristic poly-
nomial of B.

Let the elementary transformations induced by P(A) or

The length of the longest cycle of an FSR with linear Q(x) be denoted as follows:

logic feedback is related to the divisibility properties

of m(X). Only when ¢(x) = re(x), can ¢(,_) be used to C_j is the interchange of columns i and j
determine the length of all cycles (Ref. 1). To justify the

use of ¢(X) or O(x) in determining the longest cycle length C_dk) is the replacement of column i by column f plus

of FSRs associated with the T and A matrices, it must be k times column j
shown that their characteristic and minimal polynomials

l are equal, rs j, r_j(k) are corresponding row operations
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Note that all a-ithmetic operations are reduced moduh) 2. and contint, ing with
The sequence of elementary operations

(1) C,,(*) (7) C,..[¢(*)]

(2) r,.,(x: C,) (8) r-.,(x _ 1_

(3) c,_,(x) (9) c,

(4) r,:(x=' _-C,x-_C_,) (10) (;:,

(5) C,:(x) (14) (11) C._,_

(6) r,,(X'J C,A'-'_ C:*_ C,) (12) C,._,

(7) r,._. reduces the matrix of (17) to

(8) r..,
-1 0 0 0 0

(9) r.
0 1 0 0 0

reduces (13) to the Smith form 0 0 l 0 0

0 0 0 l 0

_ 1 0 (15)

0 1 4. FeedbackConfigurationfor Near-Maximal

0 0 ¢(A) Linear FSRs

_. a. Derivatio:, o! ,z polynomial for a cycle
characteristic

_;_ where D(x) = ¢(x) = m(,_) = x' + C,_ :__- C.,x_+ C,x q 1. length oJ 2'_-2. Given the characteristic polynomial g(,_)
of degree r associated with a maximal-length r-stage linear

_ This procedure is read@ extended to anv r × r T matrix FSR, then
_:' shown in Eq. (3) of Section o

as -. 0(X)--(X+ 1)"g(X)

b. The A matrix. Given the 5 X 5 [A-xl] matrix, is the characteristic polynomial of an (r+ 2)-stage linear
FSR with a major cycle length of

*+C:, C.. C, 1 1 ] 2(2_-- 1) or 2_''-2
I _, 0 0 0

0 1 x 0 0 J (16) Since complementation of the feedback has the effect of

introducing a factor of _+ 1 in the characteristic poly-
0 0 1 x 0 nomial, a cycle length of 2" can be realized with an

0 0 0 0 X+ 1 (r+ D-stage FSR, where_(X)* = (x+l) g(X)
"_ The sequence of elementary transformations from 1

' through 6 as shown in (14) results in For many values of r, a g(_.) of degree r can be found

i such that 4,(_)* is a tetranomial.

"o o o _(x) 1
1 0 0 0 0 EXAMPLE1:

' 0 1 0 0 0 (17) g(,_)= xr+x _+x'+x'+x _+,+1
: 0 0 1 0 0

o o o o x+l #(x)"= (x+l)g(x) = x" + x, + x" + 1 (18)
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or As shown in Table 1, there is an s-stage linear three-tap
FSR with a major cycle length of 2_- 2 for every value of s

a, - 1 • a,, , O a,, , On,, . I from 4 through 20. The only exception is for an s of 13.
(19)

a, :-- a,, , • a,, _• a _,, Where possd)le, it is desirable to have the stage storing
a,, , connected to tile feedhack. This allows a simplifica-

The characteristic polynomial (Eq. 18), or equivalently, Lion in the implementation of the feedback when using
the linear recurrence relationship (Eq. 19), characterizes RS flip-flops as memory elements. If the leading run of
a major cycle length of 254 (and a minor cycle length of 2) ones in the binary coeMcient of g(x) contains a single one
of an eight-stage linear FSR. as in Example I, the feedback function for (x+l) g(x)

will be
The binary coefficients (1 0 1 1 1 1 I 1 in Example 1)

may be determined from Ref. 5 for every maximal-length a,, , G a,, , @ a,; ,
feedback configuration. When a g(x) is selected such that

the binary sequence of coefficients starts and ends with a Each feedback configuration tabulated in Table 1 has a
run of ones separatcc! by a run of zeros, minor cycle of length 2. The states of the minor cycles

are:

O(X)* (x _,-1) Z(A)

results in a tetranomiai. S even S odd

-- 0_0_ oi .... 0101. 010
In Example 1, (x -_ 1) g(X) can be determined from

• 1010. • - 10 1010. 101

b. Derivation of a characteristic polynomial tot a cycle
as follows: length of 2"- 4. The characteristic polynomial

1 0 1 1 1 1 1 1 Xg(,_) O(X)= (X+l):'g(X)
I 0 1 1 1 1 1 1 g(x)

1 1 1 0 0 0 0 0 1 (x+l)g(X) where g(x) is of degree r and maximal is the character-
istic polynomial of an (r+3)-stage linear FSR with a
major cycle length of

Table 1. Linear feedback configurations for FSRcycle

lengths of 2"-2 and 2 4(2" - 1) or 2"*" - 4

s i i 2' --2

'- A major cycle length of 2 ''_ - 4 can be realized with an
4 t 2 t4 (r + 2)-stage linear FSB. By complementing the feed-5 l 3 30

6 I 2 62 back, a factor of _ + 1 is introduced. Thus,
7 I 5 126

a , 2 =5, ,(,_)*= (x+ 1)_g(,_)= (_ + ])g(_)
9 2 6 510

I0 2 3 1022

|| 1 3 2046 characterizes a linear FSR with a major cycle length of
12 2 7 4094 2'*: -- 4 and a minor cycle length of 4.
13 - -
14 I 2 163211

! 5 3 5 32766 EXAOM[Pldg Ih
! 6 I 2 65534

! 7 1 11 131070 Xa _t _ _* _,s
Ill I V2 262142 g(Jk) = + + X" "Jr + "Jr + l

19 I 7 5_!4_!96

20 I 14 1048574
¢(_)*= (A,+ x)g(_)= _,o+ _, + _. + l (_o)
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,'s

or with the exception of 6, 8, and 14 which do not exist with

three feedback taps (i.e., ,_hich can be characterized with

a,, : 1 • a. , O a,,-r. ® a. ,,,j tetranomials).
(2])

a. a. , _ a... • a',, ,,, ! Each feedback configuration tabulated in Table 2 has

a minor cycle of length 4. The states of the minor cycle
The characteristic polynomial (Eq. 20), or equivalently, are:
the linear recurrence relationship (Eq. 21). characterizes

a major cycle '.ength of 1020 (and a minor cycle length 0 0 1 1 0 0 1 1 .... 0 0 1 1
of 4) of 10-stage linear FSR.

10011001 .... 1001

When a t_(x) is selected such that the binary seqt, ence 1 1 0 0 1 1 0 0 .... 1 1 0 0
of coefficients either starts with a run of ones and ends 0 1 1 0 0 1 1 0 .... 0 1 1 0 • • •

with alternating zeros and ones (i.e., I 1 0 1 • . • 0 1),

or starts and ends with alternatiing subsequences sep-
e. Implementation of near.maximal linear FSRs. As

arated by a r-n of zeros or ones, 4)(x)* = (x -_ 1): g(x) shown in Tables 1 and 2, a near-maximal cycle length
results in a tetranomial. A g(X) of the first form yields a can be realized with a feedback function of the form
feedback configuration in which a, , is fed back.

a, , Ga,_j _a' n-#

In Example 2, (x _ + 1)g(x) can be determined from

¢:(x) + x-' ¢(x) as follows:
for values of s from 4 through 21.

1 1 1 1 1 0 1 0 1 x-'g(_)

1 1 1 1 1 0 1 0 1 g(x) Substituting qi for a,_,, the next state of the leftmost
memory element may be expressed as

1 1 0 0 0 1 0 0 0 0 1 (x:+ 1) g(x)

Q, = q, _ q_ _ q_ (22)
Linear s-stage FSRs with a three-tap feedback configu-

ration and a major cycle length of 2' - 4 are tabulated

in Table 2. Values of s from 4 through 21 are included, Given RS flip-flops with the characteristic equation

Q=S'+Rq
Table 2. Linear feedback configurations for FSRcycle

lengths of 2'-4 and 4 where

• _ i 2'-2 R'S' = 0

4 I 3 12

s I 2 _s the minimized R, and S, inputs for the flip-flops whose :
6 _ _

7 T 4 124 next state is Qt are:

I - - _ 1
_ _ so. (1) t = 1

I0 I $ IOlO

TI i 4 2o,, R, = (q, q;q; + q, qj q.)"

12 i 3 ,0,2 S, = (q; _ q',+ ¢, qj q,)'13 I 1 Sill

,, - - -- (9.) t._. 1I S I 12 3:!764

,d, ! ;, 4,ss:z R: = _ q: q. + q, :_ q..t- q, qj q'. + _ _
17 I 14 1310_1

,. s t ,d,,_4o S, =/1'
19 7 I0 524284

_o s 7 to4,s_,2 Thin, the cmt o£ the feedbick network is tour NhaNO

2T I , 2ot714, gites wb,m I = 1 and tire NAND gates when t _. 1. ,
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Provision for common colh,ctor ope,'ation (i.e., NAND- FSRs r('qui_e twt_ NAND ff,ates when q, is fed ]Jack, or
AND) is assl:med, three NAND gates otherwise.)

When a maximal-lengti'_ cycle of 2' 1 cannot be real- For example, th,,re is no 12-stage, two-tap feedback

ized with r stages, a near-maximal h,ngth of 2' 2 or configuration that yields a maximal length of 4095 (see
2_ - 4 may be re_-liz-._!x_ith r stagt.._ ,rod ;is few as fol,r iief. 2). tlowcver, the near-maximal length of 4092 can
NAND gates which comprise the feedback network, be realized with 12 memory eh'ments an,1 four NAND
(Two-tap feedb_ck networks for maximal-length linear gates (see Tal)le 2).
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